Elemental impurities in medicinal products and excipients are a major concern for regulatory authorities. The ICH Q3D guidelines set clear expectations for controlling these impurities, emphasizing risk assessments and validated testing methods.
With increasing regulatory focus on elemental impurity control, manufacturers must establish a robust testing strategy to ensure compliance. Two primary techniques for elemental impurity testing are:
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
- and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES).
Regulatory expectations and testing requirements
The ICH Q3D guideline mandates that a control strategy must be implemented if a risk assessment identifies an elemental impurity exceeding 30% of the Permitted Daily Exposure (PDE) limit. In many cases, this requires elemental impurity testing using validated methods.
To comply with ICH Q3D, manufacturers can use pharmacopoeial methods or validated alternative procedures. The two most common techniques are ICP-MS and ICP-OES, each with specific applications based on sensitivity, cost, and regulatory needs.
ICP-MS analysis: high sensitivity for trace-level detection
ICP-MS is widely regarded as the gold standard for elemental impurity analysis due to its ultra-low detection limits, often in the parts-per-trillion (ppt) range.
This makes it ideal for detecting toxic metals such as:
- Arsenic (As)
- Cadmium (Cd)
- Mercury (Hg)
- Lead (Pb)
Advantages of ICP-MS analysis
ICP-MS offers several benefits that make it the preferred choice for detecting trace-level elemental impurities, particularly in pharmaceutical applications:
✅ Ultra-low detection limits – Ensures compliance with strict impurity thresholds.
✅ High specificity – Can differentiate between isotopes of the same element.
✅ Broad elemental range – Detects a wide spectrum of elements in a single analysis.
However, ICP-MS has limitations, including:
- Matrix interferences – Sample preparation and correction techniques are required.
- Higher costs – More expensive instrumentation and maintenance compared to ICP-OES.
ICP-OES analysis: robust and cost-effective for higher concentrations
ICP-OES, also known as ICP-AES (Atomic Emission Spectroscopy), measures elemental concentrations by analyzing the light emitted from excited atoms in a plasma.
While not as sensitive as ICP-MS, it is highly effective for higher concentration ranges (parts-per-billion (ppb) to parts-per-million (ppm)) and is commonly used for routine quality control testing.
Advantages of ICP-OES analysis
For applications where higher detection limits are acceptable, ICP-OES provides a cost-effective and efficient solution with several key advantages:
✅ Cost-effective – Lower operational and maintenance costs compared to ICP-MS.
✅ High throughput – Faster analysis times make it ideal for large sample batches.
✅ Resistant to matrix interferences – More robust when handling complex sample compositions.
ICP-OES is an excellent choice when ppt-level detection is not required, making it ideal for applications such as:
- Excipient testing
- Raw material screening
- Heavy metal analysis at moderate concentrations
ICP-MS vs ICP-OES: which technique should you choose?
Choosing between ICP-MS and ICP-OES depends on several key factors:
Factor |
ICP-MS |
ICP-OES |
Regulatory compliance |
Required for ultra-low detection limits |
Suitable for less stringent impurity thresholds |
Elemental concentration |
Best for trace-level detection |
Ideal for higher concentration samples |
Sample matrix complexity |
Requires careful interference correction |
More resistant to matrix effects |
Cost |
Higher initial and operational costs |
More cost-effective for routine testing |
In short:
- Choose ICP-MS if ultra-low detection limits are required.
- Choose ICP-OES for cost-effective routine analyses where ppt-level detection is unnecessary.
How QbD Group can support your testing needs
At Quercus, part of QbD Group, we offer comprehensive elemental impurity testing using both ICP-MS and ICP-OES. Our experts provide:
✅ ICH Q3D-compliant testing
✅ Method validation and routine analysis
✅ Customized risk assessment strategies
Partnering with an accredited contract laboratory ensures reliable data and streamlined compliance.
Contact us today to learn more about our elemental impurity testing services and ensure regulatory readiness!